MSA GD&T training in October 2011 "Advanced Applications and Analysis"

The MSA has attracted an expert in GD&T to Australia to assist in advanced GD&T training. We have arranged for Dr Greg Hetland from America, as a well respect provider of GD&T training with many years experience, to provide this training and we have the opportunity to offer this training at a favourable price. Dr Hetland will also be attending the MSA conference in October as a panel member for the Coordinate Metrology Workshop.

The program is called, "**GD&T - Advanced Applications and Analysis**" and can be reviewed on the web site <u>www.iigdt.com</u>.

The venue will be at **NMI**, **Port Melbourne** (Unit 1/153 Bertie Street, Port Melbourne), depending on numbers.

This **2 day course** starting on **Monday 17th of October 2011** will be offered at **\$800 for MSA members and \$850 for non-members**. Course places will be limited to 24 to give participants every opportunity to participate fully.

Please feel free to distribute this flyer to those that will benefit from this training.

Course Content

Objective:

To provide advanced information in applications and analysis (per ASME Y14.5 and ASME Y14.5.1) involving optimization strategies for given design applications, manufacturing methodologies and measurement implications.

In-Depth Analysis & Implications of Advanced Y14.5 Principles

- □ Multiple hole patterns used to define a single datum
- □ Negative implications of using "non-functional" surfaces as datum features.
- $\hfill\square$ MMC, LMC and RFS Applied to Datum Features of Size
- □ Introduction to Multiple Hole Patterns Defined as a Single Datum
- □ 3D analysis of composite position callouts
- □ Calculations for determining allowable position tolerance for floating and fixed fastener designs
- Positioning holes and patterns of holes at "zero tolerance"
- Positioning functional coaxial cylinders from single datum
- □ Boundary principles used with profile for non-cylindrical shapes
- □ Contoured surfaces as datum features
- □ Mathematical definitions and implications of ASME Y14.5.1 standard
- □ Surface roughness implications to features of size and form constraints

Optimization Strategies in Applications & Analysis of Design

- □ Analysis and discussion of common error implications of dimensioning and tolerancing
- □ Evaluate negative implications of common incorrect measurement procedures on CMMs
- □ Profile definitions and boundary implications in corner transition areas
- □ Uncertainty implications from ASME Y14.5 and critical transformation
- Characterization of physical to functional hierarchies and criticality of this analysis
- □ Review and analyze "your" engineering drawings

Advanced Tolerancing Development within Y14.5

- □ Extension Principles for Datums used in Non-Standard Designs
- □ 3D Complex Profile Geometry and Tolerance Boundaries
- □ Critical Simplification of Y14.5
- □ Statistical Tolerancing