The expansibility factor equations in ISO 5167-2 and 

ISO 5167-4: do they deliver what they promise?
M. J. Reader-Harris

NEL, East Kilbride, Glasgow G75 0QF, United Kingdom
E-mail: mreader@tuvnel.com


Abstract

The expansibility factor equations in ISO 5167-2:2003 and ISO 5167-4:2003 are very different.  The equation for orifice plates was derived from experimental data.  It will be expected that it will work for the original orifice plates whose data were used to derive it.  The crucial question is whether it works for orifice plates from which data were not used to derive the equation.  Sufficient data have now been published from such plates.  This paper compares these data (and the original data) with the equation and concludes that the ISO expansibility factor equation does deliver what it promises.

The expansibility factor equation for Venturi tubes in ISO 5167-4 is based on theory alone.  However, this leads to bias in measurements.  In this paper data for β = 0.4 have been analysed.  Although the best way is to collect data at constant Reynolds number by installing the Venturi tube downstream of a choked sonic nozzle and with a valve downstream of the Venturi tube, the data analysed here were taken in conventional calibration rigs, without a constant Reynolds number.  

From the experimental data for four Venturi tubes (one 2”, two 4” and one 6”) an expansibility factor equation for a Venturi tube of diameter ratio 0.4 has been obtained.  The difference between the ISO expansibility factor equation and the new equation is approximately equal to the uncertainty of the ISO expansibility equation as stated in Section 5.8 of ISO 5167-4:2003.  It seems that it just fails to meet what it promises.


1. Introduction
The expansibility factor equations in ISO 5167-2:20031 and ISO 5167-4:20032 are very different.  The equation for orifice plates was derived from experimental data.  It will be expected that it will work for the original orifice plates whose data were used to derive it.  The crucial question is whether it works for orifice plates from which data were not used to derive the equation.  
In contrast to the expansibility factor equation for orifice plates that for Venturi tubes given in Section 5.6 of ISO 5167-4:2003, is based on theory alone.  However, experience has shown that it leads to bias in measurements.  In this paper data for β = 0.4, where β is the diameter ratio (the ratio of the orifice diameter, d, to the pipe internal diameter, D), have been analysed.  
2. Orifice plates
The equation for the orifice plate expansibility factor, (, in ISO 5167-1:19913 was the equation derived by Buckingham4 largely on the basis of data collected at tests in Los Angeles in 1929:
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where (p is the differential pressure, p1 the (absolute) static pressure at the upstream pressure tapping and ( is the isentropic exponent.  An improved expansibility factor equation5 was derived and included in ISO 5167-2:2003:
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where p2 is the (absolute) static pressure at the downstream pressure tapping.  The uncertainty of Equation (2) is stated1 to be
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ISO/TC 30/SC 2 decided to include Equation (2) in ISO 5167-2:2003; API decided to collect additional expansibility-factor data in a wider range of pipe sizes: from each set of data the value of b* in 
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was determined.  Those values of b* calculated from orifice plates whose edges were sharp and which were installed with a long upstream length are shown in Figure 1: they have been taken from Hodges6.  The new CEESI data were taken in 2”, 3”, 4”, 6” and 10” pipes; the SwRI data in this figure were taken in a 4” pipe.  The SwRI tests are described by Morrow7,8.  The SwRI data were calculated assuming a value of 1.3 for (; George9 (2008) states that using the true value of ( would have a negligible effect on the plotted data.  
By way of comparison those original data (i.e. the data from which Equation (2) was derived) for which Reynolds number corrections were not required are also shown in Figure 1.  The key test for the expansibility-factor equation in ISO 5167 (as for the discharge-coefficient equation) is that it works for orifice plates to which it was not originally fitted: it can be seen that all the new points lie within the uncertainty band for the equation in ISO 5167-2:2003.  
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Figure 1  Values of b* in Equation (4)
NOTE  The uncertainty in ISO 5167-2:2003 is a percentage figure and so the absolute values depend slightly on (p/((p1); accordingly the uncertainty curves shown in this figure are approximate.

3. Venturi tubes
Although the best way to collect expansibility-factor data, the method used for orifice plates in 2., is to collect data at constant Reynolds number by installing the differential pressure meter downstream of a choked sonic nozzle and with a valve downstream of the differential pressure meter, the Venturi-tube data analysed here were taken in a recirculating loop and the Reynolds number was not constant.  Four sets of data, each taken in air, were analysed: one 2”, two 4” and one 6”.  The 2” and 4” data, as calculated using the expansibility factor equation in ISO 5167-4:2003, are plotted in Fig. 7.2 of Reader-Harris10.  Some details of each Venturi tube are given in Table 1.

Table 1  The Venturi tubes used in this analysis

	Nominal diameter
	Serial number
	D

mm
	d

mm
	tapping diameter

mm
	Max. diff. pressure, (p, at each upstream static pressure, p1
	Maximum

(p/p1

	
	
	
	
	
	(p, bar
	p1, bar a
	

	2”
	28904
	52.51
	21.02
	2.6
	5.2

5.0
	22

61
	0.233

	4”
	28907M
	102.35
	40.95
	4
	3.0

2.9
	21

60
	0.148

	4”
	28907C
	102.20
	40.86
	4
	5.0

4.7

5.2
	24

35

62
	0.205

	6”
	28392
	153.96
	61.74
	4
	1.1

1.8

1.7
	22

48

70
	0.053


Each of the data sets was fitted in the same way:
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where C is the discharge coefficient and ReD is the pipe Reynolds number.  The results were as shown in Table 2.

Table 2 The best-fit coefficients of Equations (5) and (6)

	
	a
	b
	c
	a’

	2” 28904
	1.01655
	0.02321
	0.1370
	0.84435

	4” 28907M
	1.03720
	0.03782
	0.0576
	0.83463

	4” 28907C
	1.00575
	0.02039
	0.7537
	0.83742

	6” 28392
	1.00243
	0.01303
	0.5647
	0.84554


The variation in predicted values of c is very large.  It might be more appropriate to determine c so that, as in Equations (7.8) and (7.9) of Reader-Harris10, neglecting the term in β4,
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and then to determine a and b by fitting the data, where Retap is the tapping-hole Reynolds number defined by
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dtap is the tapping diameter, ( is the kinematic viscosity, u( is the friction velocity, 
[image: image10.wmf]r
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, τw is the wall shear stress and ( is the density.  

In a standard Venturi tube in both tapping planes Lindley11 made measurements of (w from which the friction factor, (, can be deduced, since following Schlichting12, ( is given by 
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where 
[image: image12.wmf]u

 is the mean velocity.  In the throat Lindley’s measurements of ( were approximately 18 per cent higher than would be obtained in a straight pipe of the same relative roughness and Reynolds number; so here a figure of 0.015 was used for (th (for 106 < Re and k/d = 10‑4, 1.18( will always be within 6 per cent of 0.015 according to the Moody Diagram, where k is the uniform equivalent roughness).  

From Equations (7) –(9) the value of c in Equation (5) was calculated, and on fitting the data using Equations (7) and (6) the results were as shown in Table 3.
Table 3 The best-fit coefficients of Equations (7) and (6)

	
	a
	b
	c
	a’

	2” 28904
	1.00186
	0.01394
	0.9382
	0.84801

	4” 28907M
	1.00855
	0.01953
	0.7411
	0.84612

	4” 28907C
	1.00578
	0.02008
	0.7411
	0.83741

	6” 28392
	1.00279
	0.01251
	0.4919
	0.84716


The values of b in Table 3 are quite close to 0.01657, the value that would have been expected from Equations (7.8) and (7.9) of Reader-Harris10, neglecting the term in β4.  When the data were fitted using Equations (7) and (6) with b = 0.01657, the results were as shown in Table 4.
Table 4 The best-fit coefficients of Equations (7) and (6) with b = 0.01657

	
	a
	b
	c
	a’

	2” 28904
	1.00253
	0.01657
	0.9382
	0.85036

	4” 28907M
	1.00805
	0.01657
	0.7411
	0.84470

	4” 28907C
	1.00513
	0.01657
	0.7411
	0.83270

	6” 28392
	1.00429
	0.01657
	0.4919
	0.89137


Because for the 6” data the maximum value of (p/p1 was only 0.053 the value of a’ varies much more between Tables 2, 3 and 4 than for the 2” and 4” data.  If the values for the other three meters are averaged the values in Tables 2, 3 and 4 are 0.8388, 0.8438 and 0.8426 respectively.  Just using the first three values from Table 2, since they have a smaller standard deviation than those in Tables 3 or 4, the uncertainty in a’ is
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Using the first three values, the mean value of a’ in Tables 3 or 4 does not differ from that in Table 2 by more than a quarter of this uncertainty.
Therefore, a reasonable expansibility equation for a Venturi tube of diameter ratio 0.4 is
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with an uncertainty of
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The effect of using this equation changes the measured discharge coefficients for the four Venturi tubes.  Their discharge coefficients are shown in Figures 2 to 5. 
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Figure 2 The discharge coefficient for 2” Venturi tube 28904
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Figure 3 The discharge coefficient for 4” Venturi tube 28907M
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Figure 4 The discharge coefficient for 4” Venturi tube 28907C
[image: image19.emf]0.9925

0.9950

0.9975

1.0000

1.0025

1.0050

0 2000000 4000000 6000000 8000000

Discharge coefficient

Pipe Reynolds Number

20 bar g using ISO expansibility

45 bar g using ISO expansibility

70 bar g using ISO expansibility

20 bar g using Equation (11) for expansibility

45 bar g using Equation (11) for expansibility

70 bar g using Equation (11) for expansibility


Figure 5 The discharge coefficient for 6” Venturi tube 28392
The improvement in the measured discharge coefficients by changing the expansibility equation is obvious, especially in Figures 2 to 4, based on data which in each case have a wide spread of (p/p1.
The difference between the ISO expansibility factor equation and Equation (11) is approximately equal to the uncertainty of the ISO expansibility equation as stated in Section 5.8 of ISO 5167-4:2003.
4. Conclusions

Since the orifice plate expansibility factor equation in ISO 5167-2:2003 was published new expansibility factor data have been published.  These data confirm that the ISO expansibility factor equation does deliver what it promises.

Data for β = 0.4 from which a Venturi tube expansibility factor equation can be derived have been analysed.  The difference between the ISO expansibility factor equation and the new equation is approximately equal to the uncertainty of the ISO expansibility equation as stated in Section 5.8 of ISO 5167-4:2003.  It seems that it just fails to meet what it promises.
The most important conclusion of this work is to suggest that it would be appropriate to collect data on the Venturi tube expansibility factor over the full range of diameter ratio, so that the expansibility factor equation in ISO 5167-4:2003 may be revised.
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